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Abstract. We embed the Wess—Zumino (WZ) model in a wider superspace than the one described by

chiral and anti-chiral superfields.

1 Introduction

There is a systematic and interesting formalism for em-
bedding, developed by Batalin, Fradkin, Fradkina, and
Tyutin (BFFT) [1], where theories with second-class con-
straints [2] are transformed into more general (gauge) the-
ories where all constraints become first class. The transfor-
mation of constraints from second to first class is achieved
after extending the phase space by means of auxiliary
variables under the general rule that there is one pair of
canonical variables for each second-class constraint. The
method is iterative and can stop in the first step [3] or can
go on indefinitely [4,5]. In any case, after all constraints
have been transformed into first class, it is necessary to
look for the Hamiltonian corresponding to this new the-
ory. The method also permits us to obtain any involutive
quantity that has zero Poisson brackets with all the con-
straints. The embedding Hamiltonian can be obtained in
this way, starting from the initial canonical Hamiltonian
and iteratively calculating the corresponding corrections.
There is another manner to obtain an embedding
Hamiltonian, which consists in still using the BFFT
method to obtain involutive coordinates [4]. The canoni-
cal Hamiltonian is then rewritten in terms of these new
coordinates that automatically give it the involutive con-
dition. Of course, the embedding Hamiltonians obtained
from these two different ways are not necessarily the same,
even though they necessarily have to describe the same
physics (these Hamiltonians must differ by first-class con-
straints only). But the important point is that for some
specific theory there may exist more than one possible em-
bedding. It is also opportune to say, on the other hand,
that there are theories which cannot be embedded [6].
One of the interesting long-standing problems that the
BFFT method could be used for to address is the covariant
quantization of superparticles and superstrings. However,
this problem has been solved in a still different embed-
ding procedure [7]. In fact, we realize that the meaning of
embedding in field theory can be taken wider than as in
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the cases described by the BFFT method. The important
point to be emphasized is that the embedding theory must
contain all the physics of the embedded one.

We would like to address in the present paper this
point of view of considering the embedding procedure in
a wider sense. We concentrate on the WZ model [8] in
superfield language [9,10]. Conventionally, the WZ model
is always developed in terms of chiral and anti-chiral su-
perfields, which are examples of an irreducible represen-
tation. We shall consider here a kind of embedding where
we describe the WZ model by using a more general su-
perfield representation. Contrarily to the bosonic nature
of the chiral and anti-chiral superfields, the general super-
field we have to use is fermionic. We shall see that there
are two possible terms to figure in the Lagrangian with a
relative parameter between them. We also show that for
a special value of this parameter, the embedding theory
exhibits a kind of gauge symmetry relating all the fields
of the theory. This is a consistent result because a natural
characteristic of the embedding theory is that is has more
symmetries than the embedded one.

This paper is organized as follows. In Sect.2 we dis-
cuss the general formalism. The embedding is achieved in
Sect. 3. In Sect. 4 we analyze the question of gauge invari-
ance. We devote Sect. 5 to concluding remarks and present
an appendix mainly to list some identities used in this pa-
per.

2 General formalism

In order to fix the notation and make future comparisons,
let us write down the general form of the real and scalar
superfield,

&(z,0) = A(z) + 0y(z) + %@9 B(z)

. .
+% 6150 C(a) + 5 07750 A ()

+La007(2) + i(ée)QD(x).

: (2.1)
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Here, all the spinors are of Majorana type and are in the
Majorana representation (their components are real). We
observe that it contains eight bosonic and eight fermionic
degrees of freedom. We are going to work in four compo-
nent notation for the spinor fields. In the appendix, we
give more details about the notation and conventions we
are using and list some useful identities.

The irreducible positive and negative chiral superfields
that contain just four component fields are given by

&, (x,0) = p(x) + %57“7508%25 - é(é&)zmqb
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(1 — v5)0F*(z). (2.3)

The WZ model [8,10] is directly obtained (up to some gen-
eral constant factor) from an action given by the product
of positive and negative chiral superfields, S = f d*zd?
0D, D_.

We first observe that the formulation of a supersym-
metric theory, using general superfields and that contain-
ing the WZ model as a particular case, cannot be done in
terms of covariant derivatives over the scalar superfield.
This is so because it would violate the correct mass di-
mension of the superfield Lagrangian, that should be two.
The correct way is to start from a fermionic superfield,
whose general form reads

_|_

_|_

Fa(,0) = Xa(2) + 0ab(z) + 50090 (2)
+ ié’y5€/\a(];) + %%“7591#;“1(1‘)

2
. (66)20 ().

+ iéﬁﬁaF(x) + (2.4)
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Consequently, the form of ¥, (z, 0
Ta(,0) = Xa(r) + Ba" () + 5 0000(2)

+ 2 150%a(w) + 5079500 (x)

4 %@(%%F*(x) + i(é@)zﬁa(az). (2.5)

If we consider the fermionic superfield with mass dimen-
sion 1/2, the mass dimensions of the component fields are

=5 Bl=1 Bl=W=[ml=3
[F] =2, [n]=; (2.6)

Notice that ¢, ¥, and F' actually have the same mass di-
mensions as the corresponding fields of the WZ model.
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The supersymmetry transformations of the component
fields can be directly obtained by the general supersym-
metry transformation relation

Wo = (Q)Va, (2.7)

which leads to
6on = §a¢7
1= 1 1= 1
dp = —Zfax - ifzﬁ - 1575)\ + 15757“1/);“

i 1

0o = 5(P9E)a + EaF.
1 .

e = 5(75%55)04 + %(’755)QF7

6"/%(1 = %(757u@¢£)a - %(757#5)04}77

i 1. i 1
= — — —_ N4 _ =
OF 4£&w+ 4675@A+ 187 10ty — 80,

i
B = 5(PFE)a. (23)
The form of the charge operators as well as the derivative
operators are given in the appendix. We observe that the
usual transformations of the component fields of the WZ
model are embodied in (2.8).

Before going on, it is opportune to make a comment
about the number of bosonic and fermionic degrees of free-
dom that appear in (2.4) and (2.5). At first sight, they
are not the same. There are thirty-two fermionic degrees
of freedom and apparently much less bosonic ones. What
happens is that the bosonic quantities ¢ and F' are not rep-
resenting just single fields. In stead of the quantity 6,¢,
we must more generically read [11]

0t — 00t + (150)ad + (170) 0 Ay

~ 1
+ 057" 0o+ 5 0)a B, (29)
which corresponds to sixteen degrees of freedom, and the
same occurs for the term with F.

3 The embedding theory

The most general supersymmetric action whose Lagran-
gian density is expressed in terms of the spinor superfields
(without involving high derivatives and nonlocal terms)
has the form

S = /d4xd49(Dau7aDﬁ@ﬁ +aDaWsD,¥5),  (3.1)

where a is a relative normalization parameter that shall
be conveniently fixed. The effective Lagrangian density is
the (00)? component of the general Lagrangian density
that appears in (3.1). Denoting the effective Lagrangian
density by £ we obtain, after a long algebraic calculation,

L= (2@ + ;) ¥ — <2a + ;) AOHap,,



J. Barcelos-Neto: A superspace embedding of the Wess—Zumino model

- (a+ i) YOx + (a — )FF" — agD¢*
1090+ LA+ S0

+ %X%n + ?\@/\ + %%7”7577

+ i%v”v"@% + %ﬁ@x - ii%ﬂ/\

1

=+ 1)2757“7”&@#/@- (32)
We notice that the bosonic quantities ¢ and F' do not mix
with any fermionic fields and their equations of motion are
the usual ones that appear in the WZ model (up to the
generic scaling parameter a). Further, we also observe that
the relative parameter a cannot be one because it would
rule out the term in FF*. Concerning the equations of
motion for the fermionic fields, we have

2(4a 4+ 1)n — (4da + 1)Ox + 2@ + 2y59A

+2in50M 1), = 0, (3.3)
(da + 1) + iy — 57", +idx =0, (3.4
2(4a + 1)0"ty, + 2950 — 2ivsn

— 219\ + ivs0y = 0, (3.5)

2(4a + 1)0"* X\ — 2iy50%1 + 29" y5m
H(YY )00 + 757 PO x = 0, (3.6)
(4a + 1)04 — 2idn + iys0X — 579747 @o, 0, = 0. (3.7)

These respectively correspond to the variations with
respect to 1, 7, A, &H, and Y, and they were used in the
identities (A.10)—(A.16).

As has been emphasized, the procedure of embedding
must not affect the physics we already know for the initial
theory. We can verify that this is actually the case by
combining these equations to obtain equations of motion
for each component field. For example, by using (3.4) and
(3.5) we eliminate A and n from the remaining equations.
The result is

dadip —2(2a + 1)y50" Y, + 5@y 1py +10x =0, (3.8)
2(2a = P + 4750" Yy + v:P7"1h +i0x =0, (3.9)
Y + 0%, = 0. (3.10)

The analysis of these equations shows us that for a = —2

they are not independent, and, consequently, the solution
for the equations of motion is not unique. On the other
hand, for a # —2 we unambiguously have

=0, (3.11)
91, = 0, (3.12)
Ox — iy5@7 1, = 0. (3.13)

Introducing these results into (3.4) and (3.5), one obtains
the following equations involving A and #:

JN =0, (3.14)
Ox —2n = 0. (3.15)

397

Remember that the equations of motion for ¢ and F
can be directly obtained from the Lagrangian (3.2) (since
a # 1), and we have seen above that the equation for
1 can be unambiguously obtained by the combination of
the set given by (3.3)—(3.7) (since a # —2). The equations
are the same as in the WZ model. Consequently the su-
persymmetric embedding of the model has succeeded by
means of the Lagrangian (3.2) if we respect the restriction
that the parameter a has to be different from 1 and —2.

4 Gauge symmetry

In the previous analysis we have seen that the supersym-
metric embedding of the WZ model starting from the La-
grangians (3.1) and (3.2) does not completely fix the value
of the relative parameter a. In this section we are going
to see that the embedding theory exhibits a kind of gauge
symmetry that only occurs for a specific value of the pa-
rameter a compatible with the previous restrictions. To see
this we take a generic variation of the Lagrangian (3.2),

_ 1 1 i
1 1 "
+§’Y5<?”\ + 5’755’ Py

1 i 1 i
5 - A ) — w _
+ 07 [<2a+ 2) Y 515A = 557 Y + Q@X]

— oA Kza + ;) oMb, + %wﬂw

i i i
—= — @)+ -0
5 V57 2@ + 155X

- 1 i 1
+ 0, KQa + 2) O* N\ — %756“1/1 + 57”7577

i 124 1% 1 v
1(7*‘7’)7 + YY), +- il Y PO, x

1 i 1
B o -2 1o
ox [(a+4) P 2@77-1-475 A

+

1
—"/5'7“7”@8#1#1,} + ATOA+ SF*F. (4.1)

4

Looking at the equation of motion (3.13), it suggests
that a possible gauge transformation for i, should have
the form

51/_1#(@ = a(x) Vs,

where a(z) is a Majorana spinor that plays the role of
a gauge parameter. Even though we have considered the
form of the equation of motion in order to have insight in
the kind of gauge transformation, we emphasize that we
are going to work off-shell.

Keeping in mind the mass dimensions of the fields that
appear in (4.1), we infer that the gauge transformations
for the remaining fields should be

(4.2)
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() = cdpala”,
(@) = da(z)s,
5X(x) = 2 Bpa(r)t,
(@)
(@)

: (4.3)

where b, ¢, d, and e are parameters to be conveniently
fixed. Replacing (4.2) and (4.3) into (4.1) we see that the
necessary condition to get the symmetry is

2b 4 2ic + 2id — ie = 8a + 2,
2b + (4a + 1)2ic + 2id — (4a + 1)ie = 2,
(da+1)b+id —ie = 4,
(da+ )b+ 2dc+id=—2.  (4.4)
These correspond to the coefficients of ays@\, ady, an,
and @Oy, respectively. There is still another equation to
be verified which is related to the field 1),,, namely

(=614 2c + e)aysy P,

+[4i + 261 — 4c — 2d(4a + 1)]ays 04y, = 0, (4.5)
where one cannot infer any conclusion for the coefficients
of aysy" 0y, and avy50"Y, because these terms are not
independent.

Considering the set given by (4.4), one can solve it to
express b, ¢, d, and e in terms of a. The result is b = —1,
¢ = 2i,d = —i(4a + 3), and e = 2i (it is important to
mention that this solution exists only if a # 0). Intro-
ducing now this result into (4.5), we get a providential
cancellation of the first term. The second one becomes

a(a + 1)arys01, = 0. (4.6)
Since a cannot be zero, we see that the symmetry given
by (4.2) and (4.3) fixes the parameter a to —1 [this value
is compatible with all the previous boundary conditions
and we also notice that it does not rule out any term of
the initial Lagrangian (3.2)].

5 Conclusion

In this work we have embedded the WZ model in a wider
superspace than the one described by chiral and anti-chiral
superfields. We have shown that it is appropriate just to
use the fermionic general superfield, and the consistency
condition of the embedding is verified by showing that
the same equations of motion as in the WZ model are
among the equations of motion of the general model since
the relative parameter that appears in the two terms of
the Lagrangian is different from —2 and 1. Finally, we
have also shown that the embedding theory has a kind
of gauge symmetry. This symmetry permits us to fix the
relative parameter, and its value is compatible with the
restriction above.

A remaining question concerns other gauge symmetries
embodied in the Lagrangian density (3.2). This can be
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dealt with in the Hamiltonian formalism by analyzing the
first-class constraints of the theory [12]. However, since
fermionic fields appear in a completely coupled way in the
Lagrangian, it is not a simple task to envisage what are
all the independent first-class constraints we can build up.
This subject is presently under study and possible results
shall be reported elsewhere.
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A Appendix

In this appendix, we present the notation, conventions
and the main identities used throughout this paper. The
gamma matrices satisfy the usual relations {y*,v"} =
20" and v = 794140 We adopt the metric convention
n* = diag.(1,—1,—1,—1). We take the completely anti-
symmetric tensor e#*P* given by €123 = 1. The matrices
5 and " are defined by

0,,1.2.3

5 =1y, (A1)

(A.2)

1% 1 v
ot = 5[7",7 ].

Let us list below some useful identities involving
gamma matrices:

VAP = P — P P — 1P, (AL3)

1
VY = 0y 4 ey, (A4)
nyo o i NN
5o = —e Tpx (A.5)
i 1
Yot = S =) + S sy, (A6)
i 1
oyl = %(n”‘)v“ =1"7) + e s, (A7)
i 1
U/Luo_p)\ — ie/tvpkvs T 1(Trupnl/)\ _ n/t)\nup)
i
= S e = p o A). (A8)
Further,
tryfy” = 4nt”,
trys = 0,
trysyH e =0,
trys iy Pyt = die P,
trot’ oPN = d(ntPyrr — ntrnrP). (A.9)
Considering ¢ and x as Majorana spinors, we also have
X = X, (A.10

PYsX = X5, (
PYsx = X7H s, (
Py x = =", (A.13
Yot x = —xot, (
VY x = XV (
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Using the relations (A.3)—(A.15), we obtain the additional
relations

Yysot x = —xvs0M ),
PYYY X = X157 VY,
VWYX = =XV M,

YTV X = XYY Y,
Py ot x = —X50M Y,
bt yP X = Xy Mo,

P50ty o x = x50y e Y. (A.16)
The Fierz identity reads
L ra
E(F )Oéﬂ(FA)crp = 6ap6[3cr, (A17)

where ' is generically representing the independent ma-
trices: It =1, I to I'® = y*, I'S = 5, I'" to I''0 = s,
I'! to I'6 = o#. Concerning I'4, the corresponding rela-
tions are almost trivial; we just have to notice the inverse
order between s and vy, from I7 to I'g = 757,. Using
the Fierz identity, we obtain

1 = 1 -
goﬂg = —Z(Sag% — ZW5Q59759

1 ~
- 1(7“75)04[3975%97

075000 = —00(075) .,
9a§’y59 = _(759)04@97

é’YS’Vueéa = _‘ge(é'YS'Yu)a

0007570 = —(57,0) 00

0y5007s0 = —(06)?,

0" 4500~ 750 = ' (00)?,

860~50 — 0,

060~"~560 = 0,

0v500~" 50 = 0.

)
)

(A.18)

The supersymmetry charge and derivative operators
are defined by

Qo = aga +i(7*8) a0y,
Qo = —% —i(67") a0,
D, = —% +1(07*) 00, (A.19)

Positive and negative chiralities are defined as
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s = 5 (1476 (4.20)
consequently,
%Qi = %(1 +75),
50 = 31 F ),
%9} = %(1 +5)7°,
%ei = %(1 T 157",
%&F =0,
o -
@9; 0,
%@ 0,
%9; =0. (A.21)
The positive and negative chiral superfields satisfy
D94 =0. (A.22)
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